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We discuss the far-from-equilibrium interfacial phenomena occurring in the multilayer homoepitaxial
growth and erosion on �110� crystal surfaces. Experimentally, these rectangular symmetry surfaces exhibit a
multitude of interesting nonequilibrium interfacial structures, such as the rippled one-dimensional periodic
states that are not present in the homoepitaxial growth and erosion on the high symmetry �100� and �111�
crystal surfaces. Within a unified phenomenological model, we reveal and elucidate this multitude of states on
�110� surfaces as well as the transitions between them. By analytic arguments and numerical simulations, we
address experimentally observed transitions between two types of rippled states on �110� surfaces. We discuss
several intermediary interface states intervening, via consecutive transitions, between the two rippled states.
One of them is the rhomboidal pyramid state, theoretically predicted by Golubovic et al. �Phys. Rev. Lett. 89,
266104 �2002�� and subsequently seen, by de Mongeot and co-workers, in the epitaxial erosion of Cu�110� and
Rh�110� surfaces �A. Molle et al., Phys. Rev. Lett. 93, 256103 �2004�, and A. Molle et al., Phys. Rev. B 73,
155418 �2006��. In addition, we find a number of interesting intermediary states having structural properties
somewhere between those of rippled and pyramidal states. Prominent among them are the rectangular rippled
states of long rooflike objects �huts� recently seen on Ag�110� surface. We also predict the existence of a
striking interfacial structure that carries nonzero, persistent surface currents. Periodic surface currents vortex
lattice formed in this so-called buckled rippled interface state is a far-from-equilibrium relative of the self-
organized convective flow patterns in hydrodynamic systems. We discuss the coarsening growth of the multi-
tude of the interfacial states on �110� crystal surfaces.
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I. INTRODUCTION

Mutilayer epitaxial growth and erosion of crystal surfaces
often exhibits the formation of fascinating surface nanostruc-
tures �1–10�. At their origin is the classical Ehrilich-
Schwoebel-Villain instability �5,6�. Thus, on high symmetry
�100� and �111� surfaces, pyramidal structures are frequently
seen in the homoepitaxial deposition growth and erosion,
which is essentially a deposition of surface vacancies by ion
beams �7�. These pyramids grow in time via far-from-
equilibrium coarsening processes studied in numerous ex-
periments and simulations on high symmetry crystal sur-
faces, such as the square symmetry �100� surfaces and the
hexagonal symmetry �111� surfaces �1–4,7,8,12�. However,
much less is known about related growth phenomena on low
symmetry surfaces. Thus, the far-from-equilibrium interfa-
cial structures formed in the epitaxial growth and erosion on
rather typical rectangular symmetry �110� crystal surfaces
have attracted attention only recently �9,10�. Rather than
pyramids, rippled one-dimensional �1D� �nearly� periodic
structures are more commonly seen on these surfaces, such
as Fe�110� �11�, Ag�110� �9,10�, Cu�110� and Rh�110� �13�.
There are two types of these rippled states, with their wave
vectors oriented along the two perpendicular principal axes
of the �110� surfaces. In addition to the rippled states, in-
triguing intermediary states of interface have been recently

revealed in the “90° ripple rotation” transitions between the
two types of rippled states on Ag �110� surfaces �9,10�, and,
more recently, on Cu�110� and Rh�110� surfaces �13�. These
intermediary states are believed to have a pyramidal charac-
ter. Most recently, exotic pyramidal structures have been
seen also on Al�110�, having the form of self-assembled
“huts,” i.e., rooflike pyramids �14�.

In this study, we discuss these far-from-equilibrium phe-
nomena occurring in the multilayer epitaxial growth and ero-
sion on �110� surfaces. To elucidate the interfacial structures
growing on these low symmetry crystal surfaces, we present
detailed exposition of the theory briefly outlined before in
our letter �3�. Within a unified phenomenological model de-
rived in Sec. II, we expose a generic multitude of interfacial
states on �110� surfaces as well as the far-from-equilibrium
phase transitions between these states. By analytic arguments
and numerical simulations, we investigate the generic non-
equilibrium phase diagram of �110� surfaces. In particular,
we address the experimentally observed transitions and inter-
mediary states between the two aforementioned types of
rippled states. We predict and discuss a number of interme-
diary interface states intervening, via consecutive transitions,
between the two rippled states �Secs. III and IV�. One of
them is the rhomboidal pyramid state that has been theoreti-
cally predicted by us in Ref. �3� and subsequently seen by de
Mongeot and co-workers in the epitaxial erosion of Cu�110�
and Rh�110� surfaces �13�. In addition, our model yields a
number of experimentally interesting intermediary states
having structural properties somewhere between those of
rippled and pyramidal states �Secs. III and IV�. Among them
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are two rectangular rippled states of long rooflike objects
�huts�. These states, theoretically anticipated by us in Ref.
�3�, represent the long time-scale form of the aforementioned
rooflike pyramid �huts� state more recently revealed to
emerge in the epitaxial growth on Al�110� �14�. In fact, our
basic rectangular rippled structure �the checkerboard ar-
rangements of huts and pits �inverted huts�� has been clearly
seen in the ion erosion experiments on Ag�110� �see Ref.
�10� and Fig. 4�d� therein�. We predict that there are two
types of the rectangular rippled states, with their wave vec-
tors oriented along the two perpendicular principal axes of
the �110� surfaces. To elucidate the transition between these
states, we generalize the classical Gibbs phase coexistence
rule to the situations involving far-from-equilibrium phase
transitions, in the absence of an effective free energy govern-
ing dynamics �Secs. III and IV, and Appendix B�. Our theory
�3� has revealed also the exotic buckled rippled interface
state, discussed here in detail. Unlike the usual interfacial
states �see, e.g., Refs. �1,2,5� and references therein�, the
interfaces in the buckled rippled state exhibit nonvanishing,
persistent surface currents forming a periodic convectionlike
pattern of vortices �Sec. IV�. This interface state is a far-
from-equilibrium relative of the Rayleigh-Benard’s and other
self-organized convective flow patterns occurring in hydro-
dynamic systems. We discuss the dynamics of various inter-
facial states on �100� surfaces �Sec. IV�. The coarsening, i.e.,
the growth of the spatial period of the rippled states on �110�
surfaces is shown to be mediated by ensembles of climbing
dislocations destroying perfect periodicity of these states. In
Sec. IV we also discuss the interfacial phenomena underly-
ing the experimentally observed enhanced coarsening of the
rhomboidal pyramid state intervening between the two
rippled states �13�.

The layout of this paper is as follows: In Sec. II, we
derive our unified phenomenological model for multilayer
epitaxial growth and erosion on �110� surfaces. In Sec. III,
we derive the kinetic phase diagram of the model exhibiting
generic multitude of growing interfacial states on �110� sur-
faces. In Sec. IV, we discuss the structure and coarsening
dynamics of these states, as well as the related experiments
on Cu�110� and Rh�110� surfaces. Appendix A outlines facet
stability analysis underlying the Sec. III discussions. In Ap-
pendix B we prove the Sec. III theorem generalizing the
classical Gibbs phase coexistence rule to the situations in-
volving the far-from-equilibrium phase transitions studied
here.

II. RECTANGULAR SYMMETRY AND INTERFACE
DYNAMICS

Here, we introduce a continuum model for the epitaxial
growth and erosion on �110� crystal surfaces. We base our
discussion on the general phenomenological approach to
multilayer epitaxial growth in the absence of �typically
weak� adatom desorption and vacancy creation �5,6�. Under
these conditions, the deposited film volume is conserved and
the height function h�x� , t� describing interface shape must
obey this conservation law. In the frame comoving with the
interface, the interface velocity �h /�t can be thus represented

as a divergence of the surface current J� = �J1 ,J2�,

�h�x�,t�
�t

= − �� · J� = −
�J1

�x1
−

�J2

�x2
. �2.1�

Here x� = �x1 ,x2� is two-dimensional �2D� base plane vector
�Fig. 1�a��. Due to the vertical translation symmetry h→h
+const, the surface current can depend only on spatial de-

rivatives of h�x1 ,x2 , t�. It is convenient to express J� in the
form

J� = J�NE��� h� + J�curv. �2.2�

Here, the first term is the surface nonequilibrium current

J�NE�M� �, which is a function of the local interface slope vec-

tor M� =�� h= �M1 ,M2� �5�, see Fig. 1�b�. J�curv in Eq. �2.2� is
the surface curvature current. This current depends on higher
order spatial derivatives of h and vanishes on a flat surface

�facet�. For example, for an isotropic surface, J�curv contains a
term isomorphic to the Mullins surface diffusion current �

−�� ��2h�, contributing to the interface velocity in Eq. �2.1�
the term −���2�2h. For the rectangular symmety surfaces,
this contribution to Eq. �2.1� has the more general form

− �� J�SD = − �11� �

�x1
�4

h − 2�12� �

�x1
�2� �

�x2
�2

h − �22� �

�x2
�4

h .

�2.3�

FIG. 1. �a� The growing interface geometry. �b� Transformations

of the surface nonequilibrium current vector J�NE�M� � under the sym-
metry operations of the �110� surface. �c� The absence of the diag-

onal reflection symmetry on �110� surfaces: The slope vectors M�

and M� � here are related by diagonal reflection. However, the corre-

sponding current vectors J�NE�M� � and J�NE�M� �� are not related by the

diagonal reflection. �d� Four types of zeros of the J�NE�M� � on �110�
surfaces: singlet, quartet, and two types of doublets.
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Note that for isotropic surfaces, �11=�12=�22=�, whereas
for square symmetry �001� surfaces, �11=�22��12. �110�
surfaces have the natural coordinate system �x1 ,x2� associ-
ated with the principal axes parallel to the sides of the sur-
face rectangular unit cell. This coordinate system is already
assumed in Eq. �2.3� as well as in the following. Rectangular
symmetry of �110� involves two major symmetry operations,
which are the reflections across the principal axis of �110�
surface, R1 : �x1 ,x2�→ �−x1 ,x2�, and R2 : �x1 ,x2�→ �x1 ,−x2�.
As M1=�h /�x1 and M2=�h /�x2, under R1,

R1:�M1,M2� → �− M1,M2� , �2.4�

while under R2,

R2:�M1,M2� → �M1,− M2� . �2.5�

The rectangular symmetry of �110� imposes a few ubiquitous

properties of the nonequilibrium current J�NE�M� �
= �J1

NE�M1 ,M2� ,J2
NE�M1 ,M2��. This vector must transform in

the same way the slope vector M� = �M1 ,M2� transforms un-
der the transformations leaving the �110� surface invariant. In
other words, for any surface symmetry operation S,

J�NE�SM� � = SJ�NE�M� � , �2.6�

see Fig. 1�b�. Thus, under R1,

J1
NE�− M1,M2� = − J1

NE�M1,M2� ,

J2
NE�− M1,M2� = J2

NE�M1,M2� , �2.7�

while under R2, by Eq. �2.5�,

J1
NE�M1,− M2� = J1

NE�M1,M2� ,

J2
NE�M1,− M2� = − J2

NE�M1,M2� . �2.8�

Under the inversion symmetry of �110�, Inv=R1 � R2,
one has Inv : �x1 ,x2�→ �−x1 ,−x2� implying Inv : �M1 ,M2�
→ �−M1 ,−M2�. Thus,

J�NE�− M� � = − J�NE�+ M� � . �2.9�

We stress that the rectangular summetry �110� surfaces do
not have invariance under the diagonal reflection,
Rdiag: �x1 ,x2�→ �x2 ,x1�, i.e., �M1 ,M2�→ �M2 ,M1�. Thus, on
rectangular symmetry surfaces, in general,

J�NE�M1,M2� � J�NE�M2,M1� , �2.10�

because the two principal axis of �110� are not equivalent to
each other; see Fig 1�c�. In this respect, �110� surfaces are
different from the square symmetry �001� surfaces for which
Eq. �2.10� holds with equality �1,2,4�. Commonly, stable ze-
ros of the nonequilibrium current, solving the equation

J�NE�M� �=0� , correspond to the preferred slopes M� of the fac-
ets that develop across the growing interface and organize
themselves into large structures, e.g., the square pyramids on

�100� surfaces �1–4�. Importantly, by Eq. �2.6�, if M� is a zero

of J�NE, then SM� is also a zero of J�NE, where S is any surface
symmetry operation. For �110� surfaces, S= �R1 ,R2 , Inv�

and one can see that there are four possible types of these
preferred slope vectors depicted in Fig. 1�d�: �i� Singlet, for
which both slope components vanish, M1=M2=0. �ii� Dou-
blets of two equivalent �symmetry related� slope vectors, for
which one of the two components of the slope vector van-
ishes. There are two types of doublets: the pair �±M1 ,0� and
the pair �0, ±M2�, called, respectively, as R1 and R2 doublet
in Fig. 1�d�. Importantly for the following, these two types of
doublets are not equivalent to each other. The diagonal re-
flection, Rdiag, that would relate them is not a symmetry of
�110� surface; see Eq. �2.10�. �iii� Quartet of four equivalent
slope vectors, for which none of the slope components van-
ishes, �±M1 , ±M2�, see Fig 1�d�. In the unstable epitaxial

growth, the singlet at M� =0 is unstable, and stable facets may
thus correspond to the doublets or to the quartet; see Sec. III.

We will expose the phenomenology of the epitaxial
growth and erosion on �110� surfaces, by considering the
dynamical model Eq. �2.1� with generic form of the nonequi-

librium current J�NE�M� �. It can be represented as an expan-

sion in powers of M� respecting the restrictions imposed by
the rectangular symmetry. Thus, by the inversion symmetry
of �110� in Eq. �2.9�, this expansion must contain only odd

powers of M� . Furthermore, by respecting the reflection sym-
metries in Eqs. �2.7� and �2.8�, we arrive at the general ex-
pansion of the form,

J1
NE�M1,M2� = M1�r1 − u11M1

2 − u12M2
2 + ¯ � ,

J2
NE�M1,M2� = M2�r2 − u22M2

2 − u21M1
2 + ¯ � . �2.11�

By considering typical situations with small selected slopes,
the simplest basic model is naturally obtained by truncating
out the higher order terms in the ellipses in Eq. �2.11�. We

stress that in the expression for the J�NE�M� � in Eq. �2.11�, one
has r1�r2, u12�u21, and u11�u22 in general for �110� sur-
faces due to their diagonal asymmetry, Eq. �2.10�. This is in
contrast to the square symmetry �100� surfaces that have di-

agonal symmetry, J�NE�M1 ,M2�=J�NE�M2 ,M1�, implying r1

=r2, u12=u21, and u11=u22.

For the special case u12=u21=u, the J�NE�M� � Eq. �2.11�
becomes a gradient of a potential,

J�NE�M� � = −
�U�M� �

�M�
, �2.12a�

with the potential

U�M� � = −
r1

2
M1

2 −
r2

2
M2

2 +
u11

4
M1

4 +
u

2
M1

2M2
2 +

u22

4
M2

4,

�2.12b�

whereas the interface dynamics equation �2.1� can be shown
to be equivalent to

�h�x,t�
�t

= −
�Fef f

�h�x,t�
. �2.13a�

Here, Fef f is an effective free energy functional of the form
Fef f�h�=FSD+FNE, with
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FNE =� d2xU�M� � �2.13b�

and

FSD =� d2x��11

2
� �2h

�x1
2�2

+
�12

2
� �2h

�x1�x2
�2

+
�22

2
� �2h

�x2
2�2	 .

�2.13c�

We stress that for u12�u21 there is no Fef f that would
generate dynamics via Eq. �2.13a�. In the following, we diss-
cuss, both analiticaly and numericaly, the general case with
u12�u21, as implied by diagonal asymmetry Eq. �2.10�. By
Eqs. �2.1�–�2.3� and �2.11�, we obtain the full kinetic model,

�h

�t
= −

�

�x1

 �h

�x1
�r1 − u11� �h

�x1
�2

− u12� �h

�x2
�2	�

−
�

�x2

 �h

�x2
�r2 − u22� �h

�x2
�2

− u21� �h

�x1
�2	�

− �11� �

�x1
�4

h − 2�12� �

�x1
�2� �

�x2
�2

h − �22� �

�x2
�4

h .

�2.14�

The model in Eq. �2.14� depends on six major parameters of

the nonequilibrium current J�NE�M� �, Eq. �2.10�: r1, r2, u11,
u22, u12, and u21. Importantly, this number can be reduced to
only three independent parameters by applying to the model
Eq. �2.14� the anisotropic rescaling,

h = Hh�, x1 = X1x1�, x2 = X2x2�, t = Tt�, �2.15�

with suitably chosen rescaling coefficients H, T, X1, and X2.
By choosing them as

H = T =
1

4� r1

�u11

+
r2

�u22
�2

,

X1 = H3/4u11
1/4, X2 = H3/4u22

1/4, �2.16�

the model in Eq. �2.14� assumes the form

�h�

�t�
= −

�

�x1�
J1� −

�

�x2�
J2� − k11� �

�x1�
�4

h�

− 2k12� �

�x1�
�2� �

�x2�
�2

h� − k22� �

�x2�
�4

h�,

�2.17a�

with k11= �H /X1
4��11, k12= �H /X1

2X2
2��12, k22= �H /X2

4��22, and,

J1� = M1��1 + a − M1�
2 − �b + c�M2�

2� ,

J2� = M2��1 − a − M2�
2 − �b − c�M1�

2� . �2.17b�

Here, M1�=�h� /�x1� and M2�=�h� /�x2�, whereas a, b, and c are
the three independent dimensionless parameters

a =
r1/�u11 − r2/�u22

r1/�u11 + r2/�u22

,

b =
u12 + u21

2�u11u22

, c =
u12 − u21

2�u11u22

. �2.18�

By Eqs. �2.11� and �2.17b�, one can see that the effect of the
anisotropic rescaling Eq. �2.15� is to replace u11 and u22 by
unity, whereas r1 an r2 are replaced by 1+a and 1−a respec-
tively, while u12 and u21 are replaced by b+c and b−c re-
spectively. By Eqs. �2.15� and �2.16�, the polar angles of the

slope vectors M� = �M1 ,M2�= 
M� 
�cos � , sin �� of the original
and the rescaled model are related by tan���
= �u22/u11�1/4 tan����, with tan���=M2 /M1 and tan����
=M2� /M1�. We note that for the case u12=u21, one has c=0 by
Eq. �2.18�. In this case, the model Eq. �2.17� can be written
in the form Eq. �2.13� employing the effective free energy,
with the local potential,

U�M1�,M2�� = −
1 + a

2
M1�

2 −
1 − a

2
M2�

2

+
1

4
M1�

4 +
b

2
M1�

2M2�
2 +

1

4
M2�

4, �2.19�

generating, via Eq. �2.12a�, the nonequilibrium current in Eq.
�2.17b�.

III. KINETIC PHASE DIAGRAM

The model in Eq. �2.17� exhibits a number of interfacial
states generic for �110� crystal surfaces, as documented in its
�far-from-equilibrium� phase diagram in Figs. 2 and 3. The
phase diagram is deduced by linear stability analysis of the
facets corresponding to the zeros of the nonequilibrium cur-

rent J�NE�M� � in Eq. �2.17b� �see Appendix A�, and further
corroborated by numerical simulations of the model in Eq.
�2.17� �see Sec. IV�. In this section, we omit primes in Eq.
�2.17� for simplicity. Our model Eq. �2.17� exibits all the
types of the �110� surface current zeros classified in Sec. II:
�i� singlet, M1=M2=0; �ii� doublets of two equivalent �sym-
metry related� slope vectors as in Fig. 1�d�. These are the R1
doublet, at

M1 = ± �1 + a, M2 = 0, �3.1�

and the R2 doublet, at

M1 = 0, M2 = ± �1 − a; �3.2�

�iii� the quartet of four equivalent slope vectors, as in Fig.
1�d�, at

M1 = ±� 1 + c + b

1 + c2 − b2
�a − a−,

M2 = ±� 1 − c + b

1 + c2 − b2
�a+ − a , �3.3�

with

a+ =
1 − b + c

1 + b − c
, a− = −

1 − b − c

1 + b + c
. �3.4�

The kinetic phase diagram depends only on the three inde-
pendent parameters a, b, and c in Eq. �2.18�. In Figs. 2 and 3,
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we depict our phase diagram in the �b ,a� plane for a fixed c.
In the figures, for concreteness, c=3/4. However, the phase
diagram does not qualitatively depend on the value of c, as
long as c�0. Fig. 2 gives the stability phase diagram for the

zeros of J�NE�M� � in Eqs. �3.1�–�3.3�. Figure 3, obtained from
our simulations of the model Eq. �2.17�, gives interface
height contour plots, interface slope vector distributions
�SD�, and interface height Fourier transforms �FT�. In the
model Eq. �2.17�, changing signs of both a and c is equiva-
lent to exchanging the base plane coordinates x1 and x2. In
effect, for a negative c, the phase diagram would appear as in
the figures here reflected across the horizontal axis �a→−a
reflection�. Due to this, for c=0 the phase diagram becomes
symmetric under a→−a. For a=0 and c=0, the exchange of
the coordinates x1 and x2 becomes the symmetry of the
model, i.e., the model acquires the diagonal reflection sym-
metry that is absent on �110� surfaces. This symmetry is,
however, present on �100� surfaces, and, in fact, for a=0 and
c=0, the model in Eq. �2.17� reduces to that for �100� sur-
faces of Refs. �1,2�.

The R1 doublet Eq. �3.1� gives rise to the rippled state R1,
whereas the R2 doublet Eq. �3.2� gives rise to the rippled
state R2, see Figs. 2 and 3. These interface states are struc-
tures of alternating facets of a doublet, e.g., for the R1 state,
the facet �+�1+a ,0� alternates with the facet �−�1+a ,0�,
see Fig. 4�a�. From the stability analysis in the Appendix A,
we find that the facets of the R1 doublet are stable only for a
above the line a+�b ,c� in Fig. 2 �see Eq. �3.4��. Likewise, the

FIG. 2. Kinetic phase diagram for the multilayer epitaxial
growth and erosion on �110� surfaces, as obtained from analytic
arguments �Sec. III�. For each interfacial state, the figure indicates
M space with stable �full circles� and unstable �empty circles� zeros

of the J�NE�M� �. R1 and R2 are the two rippled states, RhP is the
rhomboidal pyramid state, R1

�rec� and R2
�rec� are the two rectangular

rippled states, whereas the buckled rippled state, R1
�buc�, occupies the

hatched domain �all its current zeros are unstable, as depicted in the
inset�. For the RhP quartet, the angle � ranges from zero, at the
transition to R1, to 90°, at the transition to R2.

FIG. 3. Kinetic phase diagram depicting various interfacial
states in terms of their basic properties �as obtained from our simu-
lations�: surface contour plots, magnitudes of interfacial height Fou-
rier transforms �FT�, corresponding to near in-phase diffraction pat-
terns, and slope distributions �SD� in the M space, corresponding to
out-of-phase diffraction patterns. R1 and R2 are the two rippled
states, RhP is the rhomboidal pyramid state, R1

�rec� and R2
�rec� are the

two rectangular rippled states, and R1
�buc� �hatched domain� is the

buckled rippled state �for it, data are shown in the Figs. 8–11�. The
RhP rhomboidal angle 2� ranges from zero, at the transition to R1,
to 180°, at the transition to R2. At long times, the four-lobe FTs of
the R�rec� states approach the two-lobe form of the FTs of ordinary
rippled states �see Fig. 7�a��. The peaks of SD of various states here

directly correspond to the stable zeros of J�NE�M� � in Fig. 2, with the
exception of the R1

�buc� state �see Figs. 8 and 9�. The phase diagram
here is given for a positive value of the parameter c, without lack of
generality: Changing signs of both a and c is equivalent to exchang-
ing the base plane coordinates x1 and x2. Thus, in particular, the
R1

�buc� state �buckled form of the R1 rippled state� occurs for c�0,
whereas the R1

�buc� state �buckled form of the R2 rippled state, not
shown here� occurs for c�0.
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facets of the R2 doublet are stable only below the line
a−�b ,c� in Fig. 2 �see Eq. �3.4��. The lines a+�b ,c� and
a−�b ,c� in Figs. 2 and 3 intersect at the point X located at
bX=�1+c2, aX= ��1+c2−1� /c.

For b�bX, in the a parameter range,

a−�b,c� � a � a+�b,c� , �3.5�

both R1 and R2 doublets are unstable, see Appendix A. In this
range of the phase diagram in Figs. 2 and 3, both rippled
phases are unstable. In Appendix A, we show that there are
two types of qualitatively different stability behaviors occur-
ing in the range in Eq. �3.5�.

�i� For b�1, the quartet Eq. �3.3� is stable for a in the
range Eq. �3.5�, and, as documented in Sec. IV, it gives rise
to a pyramidal state we call the rhomboidal pyramidal �RhP�
state. This state is a nearly periodic structure made of four-
sided pyramids, of the form

h�x1,x2� = 
M1

x1
 + 
M2

x2
 , �3.6�

within a single period, 
x1
��1 /2, 
x2
��2 /2 �see Fig. 4�b�
from our simulations�. In Eq. �3.6�, �M1 ,M2� are as in Eq.
�3.3�. By Eq. �3.6�, these pyramids have contour lines shaped
as rhombs. The rhomboidal angle 2�, between two selected
quartet facets �see Figs. 2 and 3� is given by tan �=M2 /M1.
Thus, by Eq. �3.3� we find

tan � ��a+ − a

a − a−
. �3.7�

Note, that �→0, i.e., M2→0, as a→a+. In this limit, in Fig.
2 the RhP quartet Eq. �3.3� continuously approaches the R1
doublet Eq. �3.1�. Thus the R1-to-RhP transition in Figs. 2
and 3 is a Hopf bifurcation. Also, by Eq. �3.7�, �→90°, i.e.,

M2→0, as a→a−. In this limit, in Fig. 2, the RhP quartet
approaches the R2 doublet. Thus, the R2-to-RhP transition in
Figs. 2 and 3 is also a Hopf bifurcation.

�ii� For 1�b�bX and a in the range Eq. �3.5� �hatched
region in Figs. 2 and 3�, the Appendix A analysis indicates a
rather unusual stability behavior with all of the types of ze-

ros of J�NE�M� � in Eqs. �3.1�–�3.3� unstable �see the Fig. 2
inset�. This is in contrast to all other interface states entering
our phase diagram, which have some of the zeros stable. The
phase diagram region having all zeros unstable can never
occur for the interface dynamics governed by an effective
free energy Fef f �see Appendix A�. Fef f exists for our model
Eqs. �2,17� only if u12=u21, i.e. c=0, whereas for �110� crys-
tal surfaces u12�u21 in general, due to the absence of the
diagonal reflection symmetry �see Sec. II�. Thus, impor-
tantly, the region hatched in Figs. 2 and 3, with all zeros of

J�NE�M� � being unstable, is actually generic for �110� crystal
surfaces. In this region, an unusual interface state develops.
It is characterized by the presence of persistent surface cur-
rents, see Sec. IV. In contrast to this so-called buckled
rippled state �Rbuc�, all other states here develop facets van-

ishing J�NE�M� �, i.e., the facets in Eqs. �3.1�–�3.3�.
There are two more interfacial states that develop in our

model. In Figs. 2 and 3, they are to the right of the X point,
b�bX, for the parameter a in the range

a+�b,c� � a � a−�b,c� . �3.8�

In this range, the R1 and R2 facets in Eqs. �3.1� and �3.2� are
both stable, while the quartet Eq. �3.3� is unstable. From our
simulations in Sec. IV, we find that, in the multistable region
Eq. �3.8�, interface structures formed out of both R1 and R2
facets develop. These structures have rectangular countour
lines �see Fig. 3� corresponding to rooflike pyramids �huts�
with long rooftop edges, see Fig. 4�c�. As seen in Fig. 3,
there are two kinds of these structures, called as the rectan-
gular rippled states R1

�rec� and R2
�rec�: in the R1

�rec� state, the R1

facets grow faster than R2 facets, whereas in the R2
�rec� state,

the R2 facets grow faster than R1 facets. The difference in the
growth rates between the facets is related to the fact that R1
facets, Eq. �3.1�, and R2 facets, Eq. �3.2�, are not equivalent
to each other. The diagonal reflection that would make them
equivalent is not a symmetry of �110� surface, see Eq. �2.10�.
This suggests that, in general, there is no a steady state in-
terface profile ��h /�t=0� of the dynamics equation �2.1� that
would have the form of a static edge between the nonequiva-
lent R1 and R2 facets �so one of them prevails, as seen in the
R�rec� states�. Indeed, such a static edge can exist only along
the special line acr�b ,c� in the phase diagram Fig. 2, given by
the equation,

acr =
�1 + �c/3�2 − 1

c/3
, �3.9�

derived in Appendix B. The critical line Eq. �3.9� actually
corresponds to the phase transition between R1

�rec� and R2
�rec�

states in Figs. 2 and 3; see Sec. IV. In Appendix B, we also
prove a theorem on the existence of static edges between two

facets with preferred slope vectors M� A and M� B �i.e.,

FIG. 4. �Color online� Three-dimensional �3D� views of various
interfacial states from our simulations: �a� rippled state with the
period �, �b� rhomboidal pyramid state with the periods �1 and �2,
and �c� rectangular rippled state, with the period �, which motif is a
rooflike pyramid �hut�, with a long rooftop edge of the length 	.

LEVANDOVSKY, GOLUBOVIĆ, AND MOLDOVAN PHYSICAL REVIEW E 74, 061601 �2006�

061601-6



J�NE�M� A�=0� and J�NE�M� B�=0��, for the model Eq. �2.1� with a

general form of the J�NE�M� � and the curvature current of the
surface diffusion type �see Sec. II�. For this class of models,
our theorem asserts that the static edge exists provided

�
M� A

M� B
dM� · J�NE�M� � = 0. �3.10�

In the line integral in Eq. �3.10�, the integration path �in the
M space� is the straight line segment connecting tips of the

vectors M� A and M� B �see Appendix B and Fig. 12 therein�.
For the special case with the nonequilibrium current gener-

ated by a potential U�M� �, via Eq. �2.12a�, our theorem Eq.

�3.10� reduces to the condition U�M� A�=U�M� B� analogous to
the standard Gibbs condition of �effective� free energy den-
sity equality at the first-order transitions between two differ-
ent phases. However, the Fef f exists here only under special
circumstances, that is, if the parameter c in the model Eq.
�2.17� vanishes, see Sec. II. Thus, to discuss the general situ-
ation with c�0, we must invoke the more general theorem
on the static edges existence in Eq. �3.10�. We stress that if

the facet slopes M� A and M� B are two equivalent vectors �re-
lated by a surface symmetry operation� then, by invoking the
current symmetries Eqs. �2.6�–�2.9�, the Eq. �3.10� can be
shown to be automatically satisfied �in contrast to non-
equivalent facets which coexistence requires special condi-
tions such as Eq. �3.9��. Significant examples for this unre-
stricted facet coexistence are the static edges formed between
the two facets of the R1 �or R2� doublet seen in the R1 �re-
spectively R2� rippled phase, and the static edges between
any two of the four quartet facets �seen in the RhP state�. In
fact, thanks to this coexistence, the four-sided RhP pyramids
are structurally possible.

We end this section with a few conceptually and physi-
cally significant notes.

�1� An important aspect of the epitaxial growth is the
selection of the slope vectors of the faceted morphologies
developing across the interface. In numerous previos studies,
the selected facet slope vectors are simply assumed to corre-

spond to the zeros of J�NE�M� �. We stress, however, that this
common “zero current assumption” is necessarily true only
for the interface dynamics governed by an effective free en-
ergy: By Eqs. �2.12� and �2.13�, it can be shown that
dFef f /dt=−�d2x��h /�t�2
0, i.e., Fef f generally decreases in
time. This time minimization of Fef f is achieved by breaking
up of the interface into �growing� flat facets: on a flat facet
the surface diffusion “free energy” FSD�0, Eq. �2.13c� re-
duces to zero, whereas the nonequilibrium current “free en-
ergy” Eq. �2.13b� is minimized by selecting the slopes that

minimize the local potential U�M� �. Thus, by Eq. �2.12a�,
J�NE=0 at the selected slope vectors. On the other hand, in
our model, unless c=0, there is no Fef f governing the inter-
face dynamics. Thus, for c�0, it is not assured that interface

structures have facets vanishing J�NE�M� �. This is evidenced
here by the existence of our R�buc� state, which indeed exhib-
its persistent surface currents �see Sec. IV�. Still, with this
important exception, for all other states of our model we find

that the selected facet slopes M� are zeros of J�NE�M� �.
�2� For the special yet conceptually significant case c=0,

i.e., u12=u21, whence interface dynamics is governed by an
Fef f �see Eqs. �2.12�, �2.13�, and �2.19��, the phase diagram
in the �b ,a� plane becomes symmetric with respect to
�b ,a�→ �b ,−a�, with the axis a=0 becoming the symmetry
axis of the phase diagram. For c=0, the change a→−a is
equivalent to exchanging x1 and x2, as can be seen from Eq.
�2.17�. In particular, R1 state is then mapped into R2 state.
Likewise, R1

�rec� is mapped into R2
�rec� and the transition line

between these states is simply acr=0, in accord with Eq.
�3.9� for c→0. Indeed, for c=0, selected slopes are minima
of the potential U�M1 ,M2� in Eq. �2.19�. At a=0 and for any
b�1, U�M1 ,M2� has two degenerate minima at the slope

vectors M� A= �±1,0� and M� B= �0, ±1� �see Eqs. �3.1� and

�3.2� with a=0�, i.e., U�M� A�=U�M� B�, so the system is at the
phase transition between R1

�rec� and R2
�rec� states. At this tran-

sition, M� A and M� B facets coexist and this gives rise to the
formation of a four-sided pyramidal state occurring at this
critical point �see also Sec. IV�. On the other hand, a positive
a in Eq. �2.19� would break the degeneracy in favor of the

M� A facet that then has a smaller effective free energy density

Eq. �2.19� than the M� B facet. This gives rise to the formation

of the R1
�rec� phase, with the dominant M� A, i.e., R1 facets

outgrowing smaller, less rapidly growing M� B, i.e., R2 facets;
see Sec. IV. Likewise, for a�0, the R2

�rec� phase is favored,
with the dominant R2 facets outgrowing smaller, less rapidly
growing R1 facets. All these trends can be easily understood
in terms of the Fef f, i.e., the potential Eq. �2.19� that exists
for c=0, and ensures that the phase transition is governed by
the free energy minimization. It is, however, remarkable that
a similar first-order transition phenomenon occurs for c�0
as well, in the absence of an exact Fef f. A nonzero c causes
just a shift of the critical value acr from zero to the nonzero
value given by Eq. �3.9�.

�3� The buckled rippled state occuring in the range 1
�b�bX=�1+c2 �the hatched area in Fig. 2� disappears for
vanishing c. It is the existence of Fef f that excludes �for c

=0� the situation with all zeros of J�NE�M� � being unstable,
which occurrs in the buckled rippled state �see Appendix A�.
We stress, however, that, due to ubiquitous diagonal asym-
metry Eq. �2.12�, one has c�0 �i.e., nonexistence of Fef f� in
general on �110� surfaces. This fact ensures the presence of
the Buckled Rippled State in the overall phenomenological
phase diagram for �110� surfaces epitaxial growth and ero-
sion.

IV. INTERFACIAL STATES

In this section, we discuss the properties of the multitude
of interfacial states introduced in Sec. III. We begin with the
rhomboidal pyramid �RhP� state which is a two-dimensional
periodic interface structure of four-sided pyramidlike objects
seen in Fig. 4�b� with the form given by Eq. �3.6�. The con-
tour lines �i.e., step terraces� of these pyramids are rhombi
that occasionally transform into rhomboids, if rooftop edges
develop on the pyramids, see Fig. 5. This RhP state, pre-
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dicted by us in Ref. �3�, has been subsequently seen by de
Mongeot and co-workers in the epitaxial erosion on both
Cu�110� and Rh�110� surfaces �13�. Typical for the RhP state
is the interface slope distribution �SD� �i.e., out-of-phase dif-

fraction pattern� with the quartet of four equivalent peaks
�±M1 , ±M2�, see Figs. 3 and 5. By the RhP motif in Eq.
�3.6�, squared magnitude of the Fourier transform �FT�,

h̃�q1 ,q2�
2 of the RhP 2D periodic surface is easily shown to
have dominant peaks placed along the q1 and q2 axes: �i� the
set of peaks at the wave vectors �±2��2n+1� /�1 ,0�, with the
integrated intensities In

�1���M1�1�2�2n+1�−4, n=0,1 ,2 , . . .;
�ii� the set of peaks at �0, ±2��2n+1� /�2� with the inte-
grated intensities In

�2���M2�2�2�2n+1�−4, n=0,1 ,2 , . . ..
Structurally, by Eq. �3.6�, the RhP state has the form of a
linear superposition of the two rippled states. Thus, its FT
�i.e., experimentally, the near in-phase diffraction pattern� is
essentially the superposition of the FTs of the two rippled
states R1 and R2 �see Fig. 3�. Notably from our simulations,
�at most� the four brightest �n=0� among the peaks, at the
wave vectors �±2� /�1 ,0� and �0, ±2� /�2� are visible �see
Fig. 5�. Such a four-lobe near in-phase diffraction pattern is
manifested in the RhP FT magnitude plots in Fig. 3 and in
the upper panel of Fig. 5�a� from our simulations. All other
peaks are smeared by the positional disorder of the pyramid
lattice. This disorder is especially pronounced in the RhP
region close to the R1

�buc� state. Therein, the RhP in-phase
diffraction pattern exhibits only two peaks �unless very close
to the RhP-to-R2 transition, see the lower panel in Fig. 5�a�
and see Fig. 5�b�, and the discussions in the following�. Such
a nearly two-lobe RhP near in-phase diffraction pattern has
been indeed seen in the recent study that has revealed our
RhP state in erosion on Cu�110� and Rh�110� crystal surfaces
�13�.

The RhP state is characterized by �nearly� rectangular net-
work of pyramid facet edges, see Fig. 5�a�. The coarsening
dynamics of the RhP state is similar to that of the square
pyramid Phase I �with the square network of edges� on �001�
surfaces �1,4�. The coarsening is mediated by motion and
annihilations of the dislocations of the network of pyramid
facet edges seen in Fig. 5�a�. In accord with this, we find that
the interface width, w= �h2�1/2, grows as w� t
, with 

�1/4 �1,4�. Such a coarsening was found away from the
transitions to other interface states in Figs. 2 and 3, whence
the RhP forms as in the upper panel of Fig. 5�a�. However, a
substantially faster coarsening was found in the RhP region
close to the R�buc� state �the hatched domain in Figs. 2 and 3,
discussed later on�. This enhanced roughening of RhP is
documented in Fig. 5�b�, which gives the interface width w
for several different times, versus the parameter a �for a fixed
b�1�. In this figure, the RhP state occurs between a+ and a−,
whereas for a�a− �a�a+� one has the rippled phase R2

�respectively, R1� occurs. The fastest coarsening was found
within the RhP state range, a−�a�a+; see Fig 5�b�.
Therein, at the longest times, the RhP pyramids grow with a
high coarsening exponent 
�0.4, see Fig 5�b�. Such an en-
hanced roughening of the RhP intermediary state �faster than
that of the nearby rippled states, see below� has been ob-
served also in the aforementioned experiments on Cu�110�
and Rh�110� surfaces �13�. We stress that the enhanced
roughening of RhP occurs only in the proximity to the R�buc�

state in Figs. 2 and 3. There, the RhP state becomes highly
anisotropic. This is documented in the lower panel of Fig.
5�a� where we see that the two RhP state periods �1 and �2

FIG. 5. �a� Rhomboidal pyramid �RhP� state: To the left, the
interface contour plots. To the right, facet edges plots �contour plots
of the magnitude of local interface curvature�, with prominently
present dislocations destroying perfect periodicity of the interface
profile. In the upper panel of �a�, we give the ordinary RhP state,
occurring away from the RhP-to-R1

�buc� transition. In the lower panel
of �a�, we give the intensely rough RhP state, occurring close to this
transition �the interface here corresponds to the maximally rough
surface found at a=0.6 in �b� here�. Note the qualitative difference
between the FTs in the upper and lower panels of �a�, see the text.
�b� The square of the interfacial width �h2� vs the parameter a,
given for several different times, across the transition from the
rippled state R2 �for a�a−� to the rippled state R1 �for a�a+�,
going through the intermediary rhomboidal pyramid state �occur-
ring for a−�a�a+�. The figure is obtained from numerous simula-
tions done along the line b=0.8 that passes close to the transition
line b=1 from the RhP to the R1

�buc� state �see Figs. 2 and 3�. The
inset documents the enhanced roughening of the RhP state, with the
roughening exponent reaching the value �0.4 close to the center of
the RhP range, at a=0.6. In �b�, to the right, we give FT magnitudes
and SDs found along this ripple rotation transition, for a=0 �in the
R2 state�, and for a=0.4 and 0.8 �both within the intensely rough
RhP range�. Note that FTs, i.e., in-phase diffraction patterns of the
intensely rough RhP are with just one pair of peaks, like the R1

pattern. The other, significantly weaker pair of peaks can be seen
only close to the transition to R2 �see a=0.4 here�. Note that SDs,
i.e., the out-of-phase diffraction patterns distinguish the RhP from
the R1 state �see Fig. 3�.
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�along the principal axis of �110� surface, see Fig. 4�, signifi-
cantly differ from each other. This anisotropy is manifested
also in the character of the pyramid edges seen in the lower
panel of Fig. 5�a�: vertical edges are sharp and connected to
each other �either directly or by frequently present rooftop
edges�. In contrast to this, the horizontal edges seen in this
figure are blunt and disconnected from each other. Due to
this positional disorder of horizontal edges, the intensely
rough RhP structure in the lower panel of Fig. 5�a� is signifi-
cantly more disordered then the ordinary RhP structures seen
in the upper panel of Fig. 5�a�. Its enhanced roughening is
similar to the fast roughening seen in the nearby R�buc� state,
discussed later in this section. Both the intensely rough RhP
and the R�buc� state exhibit two-lobe near in-phase diffraction
patterns �i.e., FT’s�, see Fig. 5, as well as Fig. 11 later on.
Having the two-lobe �rather than the four-lobe� FT pattern is
a consequence of the typically large aspect ratio �1 /�2, and
also, of the strong positional disorder of vertical facet edges
manifest in the lower panel of Fig. 5�a�. Indeed, by our pre-
vious discussions of the peak intensities, I0

�2� / I0
�1�

= �M2�2�2 / �M1�1�2, so for �2��1 the peak pair at �q1=0,
q2= ±2� /�2� is much weaker than the peak pair at �q1
= ±2� /�1, q2=0�. The weaker peak pair is thus easily de-
pressed by the positional disorder seen in the lower panel of
Fig. 5�a�. In effect, the intensely rough RhP state exhibits the
two-lobe near in-phase diffraction patterns seen in Fig. 5.
Thus, importantly, the intensely rough RhP state has nearly
the same in-phase diffraction pattern as a simple rippled
state. This feature, seen in the experiments on Cu�110� and
Rh�110� surfaces �13�, is documented here in Fig. 5�b� from
our simulations. Note that this FT, i.e., the near in-phase
diffraction pattern, is nearly the same as that of the R1
rippled state �unless close to the transition to the R2 rippled
state, see the middle panel of Fig. 5�b��. Because of this, the
out-of-phase diffraction pattern, i.e., slope distribution from
our simulations �see Fig. 5�b��, with the quartet of four
equivalent peaks, is essential for the identification of our
RhP state. This is confirmed by the recent experiments on
Cu�110� and Rh�110� surfaces �13�. Our R1 state here corre-
sponds to the “hot rippled state” �the high temperature one�,
whereas the experiments indeed show that the RhP has the
same FT as the “cold ripple state” seen in Ref. �13�.

We now proceed to discuss the properties of the rippled
states R1 and R2. From our simulations we find that the
coarsening of the rippled states is mediated by moving dis-
locations that destroy the perfect periodicity of these struc-
tures. See Figs. 6�a� and 6�b�, giving the interface in terms of
the edges formed between alternating R facets �see also Fig.
4�a��. The dislocations of rippled states R1 and R2 are some-
what similar to the dislocations of 2D smectic A liquid crys-
tals �15�. Here, however, the dislocations are prominently
dynamical objects. They move �climb� along the direction of
facet edges in Figs. 6�a� and 6�b�. This motion is driven by
the edges tensions, which are unbalanced at the dislocations
cores. In Figs. 6�a� and 6�b� we see two morphologically
different types of dislocations: �i� “forks,” with three edges
on one side of the core and just one edge on the opposite
side; �ii� “knives,” with two edges on one side and no edges
on the opposite side of the core. Thus, in both cases, there
are extra two edges pulling dislocations. This misbalance of

edges tensions causes the dislocations to move along the
ripples, i.e., vertically in Figs. 6�a� and 6�b�. Importantly, we
find that this dislocation motion �climb� mediates the growth
of the ripple phase period �: as the dislocation climbs along
the extra edges, it leaves behind enlarged facets �compare the
facet width just above and below dislocations in Figs. 6�a�
and 6�b��. Thus, the growth of the rippled phase period � is
nothing else but the fusion of the rippled state R facets me-
diated by climbing dislocations in Figs. 6�a� and 6�b�.

In addition to the interface width w and the average ripple
period �, we find that the rippled states are characterized also
by the coherence length of ripples, 	, corresponding to the
separation between dislocations along a ripple �see Fig. 6�.
The ripple coherence length 	 increases with time because of
annihilations of pairs of dislocations traveling towards each

FIG. 6. �a� Facet edges plot of the rippled state R1 in the phase
diagram domain in which both fork and knife dislocations are
present. �b� Facet edges plot of the rippled state R2 in the domain in
which only knife dislocations occur. Note that the R2 state in �b� is
rotated by 90° to facilitate comparison with �a�. The length scale 	
is the average distance between dislocations along a ripple, see the
text. �c� Rippled states interface height-height correlation functions
K�x1 ,x2 , t� of the R1 state: Longitudinal correlations Klong�x1 , t�
=K�x1 ,x2=0, t�, used to find the average phase period ��t�, and
transversal correlations Ktrans�x2 , t�=K�x1=0,x2 , t� used to find the
ripple coherence length 	�t�. �For the R2 state, x1 and x2 are to be
switched in the above statements.� In �d� we depict topological
changes �knife-to-fork-to-knife transitions� causing the dislocation
to glide by one half of the ripple phase period. Such a dislocation
glide is prohibited if fork formation is suppressed, as in the rippled
state in �b�.
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other in Figs. 6�a� and 6�b�. Due to the annihilations, the
number of dislocations decreases, and the ripple coherence
length 	 increases in time. Both � and 	 are extracted from
our simulations by computing the anisotropic height-height
correlation function,

K�x1,x2,t� = �h�x1,x2,t�h�0,0,t�� = �w�t��2��x1/��t�,x2/	�t�� ,

�4.1�

for the R1 phase. In Eq. �4.1�, the function � decays in an
oscillatory fashion along x1 �longitudinal correlations�, and
monotonously along x2 �transversal correlations� see Fig.
6�c� for details. By using the longitudinal and transversal
correlations, from our simulations we find that ��w and
	 grow as power laws of time,

w � � � tn�, 	 � tn	. �4.2�

Regarding the values of the coarsening exponents 
=n� and
n	, we have revealed two kinetically different subdomains of
the whole rippled phase domain in the phase diagram in Fig.
4. The two subdomains are characterized by different mor-
phologies and kinetics of moving dislocations, as illustrated
in Figs. 6�a� and 6�b�. Most of our phase diagram in Fig. 3 is
occupied by the rippled phase with the dislocations depicted
in Fig. 6�a�. In this figure, we see both forks and knives
climbing along the x2 direction. In addition to this directed
climbing motion, our simulations reveal that dislocations
move also along the x1 direction in Fig. 6�a�. In contrast to
the steady dislocation climb, the dislocation glide motion
along x1 has a random walk character and it involves recon-
nection �topology changes� of the edges network, turning
forks into knives and vice versa; see Fig. 6�d�. There we see
a knife turning into a fork, which then turns into a knife, the
position of which is displaced by one half of the rippled
phase period �with respect to the position of the original
knife�. In the subdomain of the phase diagram in which such
a mechanism of dislocation glide is active, we find that the
w�� and 	 grow as in Eq. �4.2� with 
=n�=2/7 and n	

=4/7, from our simulations, and further corroborated by ana-
lytic arguments elsewhere �16�. Our simulations, however,
reveal the existence of another subdomain of the kinetic
phase diagram in Fig. 3, in which the coarsening of the
rippled phase goes with different exponents, n�=1/3 and
n	=1/2. This scaling was found to occur for c�0 in a range
below the RhP domain in Fig. 3 �e.g., for a below a−, i.e.,
below the intensely rough RhP in Fig. 5�b��. Therein, the
reconnections of facet edges �i.e., the formations of forks�
are suppressed, as documented in Fig. 6�b� from our simula-
tions in which only the knife-dislocations are seen. Conse-
quently, the dislocation glide motion �Fig. 6�d�� is prohibited
in this subdomain of the phase diagram. This dynamical con-
straint yields the aforementioned exponents 
=n�=1/3 and
n	=1/2 found in the simulations and further corroborated by
analytic arguments elsewhere �16�. In contrast to the long
time �slope selection dominated� regime with 
=n�, in the
ion erosion studies on Cu �110��13�, the selected facets of the
rippled and the RhP state have not yet fully reached the
selected slope magnitudes �their slope angle still grows
within the experimental time window�. We stress that such

early time regimes are known to exhibit the coarsening ex-
ponent n smaller than 
, with a typically small n �17�.

In addition to passing through the RhP and the R�buc�

states, the transition between the rippled states R1 to R2 may
go also through the rectangular rippled states, R1

�rec� and R2
�rec�

comprised of rooflike pyramids �huts� formed out of both R1
and R2 facets, see Figs. 3, 4�c�, and 7. We stress that our
basic R�rec� state structure, the checkerboard arrangement of
huts and pits �inverted huts� has been clearly seen in the
erosion experiments on Ag�110�, by Constantini et al. �see
Fig. 4�d� in Ref. �10�, and compare with our Figs. 3 and 7�.
The hut sizes � and 	 are measured along the two �non-

FIG. 7. Rectangular rippled states: �a� Snapshots of facet edges
plots of the R2

�rec� state and interface FTs at two different times, and
corresponding longitudinal and transversal correlations used to ob-
tain the structural length scales ��t� and 	�t� �using the recipe in
Fig. 6�c��. Note the presence of rapidly growing horizontal rooftop
edges interfacing the dominant R2 facets �see also Fig. 5�c��. These
rooflike pyramids �huts� are terminated on both sides by small
rhomboidally shaped R1 facets which cluster to form long chains.
�b� Sequence of interfacial states occurring in the R1

�rec� to R2
�rec�

transition �interface contour lines and corresponding facet edges
plots�. For a�acr, one has the R1

�rec� state with rooftop edges grow-
ing vertically �left panel�. For a�acr, one has the R2

�rec� state with
rooftop edges growing horizontally �right panel�. At the critical
point a=acr, four-sided rectangular pyramids develop with no roof-
top edges present �middle panel�.
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equivalent� principal directions of �110� surface �see Figs.
4�c� and 7�. We find they grow in time with different power
laws: �� tn�, with n�=1/4, and 	� tn	, with n	=1/2, as ob-
tained from the longitudinal and transversal height correla-
tions �Fig. 7�a��. As w�t����t��	�t� at long times, such
R�rec� pyramid states are a special kind of rippled states with
the period ��t�. This is evidenced by their Fourier trans-
forms, i.e., near in-phase diffraction patterns seen in Fig.
7�a�. They have four peaks, at �±q1, ±q2�, with q1�1/� and
q2�1/	, for the R1

�rec� state. However, as 	�t����t�, this dif-
fraction pattern approaches in time the form of the near in-
phase diffraction pattern of the nearby rippled R1 state with
just two peaks at �±q1 ,0�. The length scale 	�t� is essentially
the length of the long rooftop edges present on these rooflike
pyramids, see Figs. 7 and 4�c�. These rooftop edges develop
and grow either along the x2 direction in the R1

�rec�, or along
the x1 direction in the R2

�rec� state, see Fig. 7�b�. The snap-
shots form our simulations of the R2

�rec� state, in Fig. 7�a�,
well document the presence of rapidly growing horizontal
rooftop edges interfacing the dominant R2 facets. Note that
these rooflike pyramids �huts� are terminated on both sides
by small rhomboidally �diamond� shaped R1 facets. Promi-
nent feature of the R�rec� state is that these diamondlike facets
cluster to form long chains. Due to the presence of these
facet chains, the interface structure of the R�rec� states is more
coherent than that of ordinary rippled states. At early times,
R�rec� states appear periodiclike not only along the � direction
but also along the 	 direction �unlike the ordinary rippled
phase�: Note that, at early times, the transversal correlations
in Fig. 7�a� oscillate �unlike the correlations of the ordinary
rippled state in Fig. 6�c��. However, with increasing time, the
number of diamond facets clustered into each of the chains
decreases and, also, the diamond facets chains are less
evenly spaced, as seen in Fig. 7�a�. Due to this, the coher-
ence of the R�rec� state along the transversal direction �paral-
lel to ripples� decreases in time and becomes comparable to
that of ordinary rippled state. This is manifested in the loss of
oscillations in the transversal height correlations �see Fig.
7�a� at the long time and compare with Fig. 6�c��. Related to
this, at long times, the four FT peaks of the R�rec� state in the
left panel of Fig. 7�a� merge into just two peaks seen in the
right panel, and such FT becomes indistinguishable from that
of the ordinary rippled state �see Fig. 4�.

The rooftop edges on the rectangular pyramids do not
develop only at the transition between R1

�rec� and R2
�rec� states

in Figs. 2 and 3; see Fig. 7�b�. At this transition, simple
four-sided pyramids �without rooftop edges� develop, with a
rhomboidal network of edges, see the middle panel of Fig.
7�b�. This critical state is an anisotropic version of the square
pyramid Phase II on �100� surfaces �1,4�. Its near in-phase
diffraction pattern has four peaks �±q1 , ±q2�, with q1�q2

�1/ t1/4. The R1
�rec�-to-R2

�rec� transition line is a far-from-
equilibrium first-order-like transition at which the two non-
equivalent doublets of �110� surfaces �see Eqs. �3.1� and
�3.2�, and Fig. 1�d�� coexist. This coexistence is necessary to
ensure the structural stability of the four-sided pyramids de-
veloping at the transition point. Indeed, R1 and R2 facets
comprising such pyramids can maintain �at long times� equal
sizes and shapes only if the conditions are fulfilled to have

the stationary solution ��h /�t=0� of Eq. �2.1� being the static
interface �edge� between two semi-infinite R1 and R2 facets.
As noted in Sec. III, this requirement yields our analytic
prediction for the position of the R1

�rec�-to-R2
�rec� transition line

given in Eq. �3.9�, which is corroborated by the simulations
in Fig. 7�b�. Main features of the ripple rotation transition
seen on Ag�110� surface �growth� �9� correspond to those of
our R1

�rec�-to-R2
�rec� transition. Importantly, our study shows

that in the multistable region �suggested by the experiments
Ref. �9�� one deals not with simple rippled phases �R1 and
R2� but rather with more complex structures, the rectangular
rippled states. We note that the intermediary state seen on
Ag�110� has a near in-phase diffraction pattern different from
that of the critical state seen in the middle of Fig. 7�b�. Still,
the experimental out-of-phase pattern is the same as for the
state in the middle of Fig. 7�b�. As we discussed elsewhere
�18�, the experimental near in-phase diffraction pattern �as
observed in Ref. �9� close to the transition� emerges due to
an interesting effect of the vertical growth asymmetry be-
tween the huts and pits �inverted huts� comprising the R�rec�

state interfaces.
Our model exhibits one more state, the buckled rippled

R�buc� state, which occupies the hatched region in Figs. 2 and
3. Therein, as discussed in Sec. III and Appendix A, all zeros

of J��NE��M� � are unstable �in contrast to the rest of the phase
diagram, with at least some zeros stable�. The very existence
of such a state escapes the common belief that the stable

facets with vanishing J��NE��M� � dominate the epitaxial growth
and erosion with slope selection �as no facet is stable here�.
In the region of our R�buc� state in Figs. 2 and 3, we find a
long transient involving ordering of pyramidal chains, see
Fig. 8. The interface eventually selects the shape of a rippled
phase with buckled �wavy� ripples. The buckling breaks the
ripples into smaller facets joined by edges, see Fig. 9�a�. Due
to this, the R�buc� state is structurally close to the RhP state,
with a motif similar to that of RhP, Eq. �3.6�, however with

M1 and M2 therein not corresponding to a zero of J��NE��M� �,
see Fig. 8�c�. Thus, strikingly, in contrast to the RhP and all
other states discussed here, the R�buc� state does not develop

facets whose slopes vanish J��NE��M� �, see Figs. 8�c� and 9.
Rather, as documented in Fig. 9, the facets of the R�buc� state
carry nonvanishing, persistent downhill surface currents. The
downhill currents in the R�buc� facets are compensated by
uphill currents flowing along the edges between the facets,
i.e., the net current flux is zero; see Fig. 9�c�. Due to these
current backflows, the overall surface current pattern has a
vortexlike character, with vortices forming a rectangular lat-
tice; see Fig. 9�b�. As seen in this figure, the R�buc� state
exhibits both clockwise and counterclockwise oriented vorti-
ces alternating across the surface. This convectionlike surface
current pattern, driven by incoming atomic fluxes, is a far-
from-equilibrium relative of the self-organized fluid patterns
formed in the hydrodynamic systems exhibiting convective
instabilities driven by heat fluxes, e.g., Rayleigh-Benard pat-
terns �19�. Note, however, that, unlike these steady hydrody-
namic patterns, the length scales of the R�buc� state vortex
lattice actually grow in time as the interface coarsens. In the
R�buc� state, the distribution of interface slope vectors
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P�M1 ,M2 , t� approaches a stable form having maxima at M�

values which are off the zeros of J��NE��M� �, see Fig. 8�c�.
Thus, the uncommon R�buc� state does exhibit the slope dis-
tribution selection although there are no stable zeros of

J��NE��M� �. We find the R�buc� state to exhibit a fast coarsening
seen in Fig. 8�a�: the interface width w� t
, with 
�0.4
close to the center of the R�buc� range in Fig. 3. We recall that
a similar enhanced roughening is found in the RhP phase, in
the proximity to the R�buc� domain in our kinetic phase dia-
gram in Fig. 3 �see Fig. 5 and the discussions�. Our simula-

tions have revealed another interesting structural aspect of
the buckled rippled state, documented in Fig. 10; this state is
actually the buckled form of the rectangular rippled state.
Indeed, from Fig. 10�b�, one can see that the large scale
morphology of the R�buc� state is that of the R�rec� state, with
large huts and pits �inverted huts� forming a checkerboard
structure. However, in contrast to the R�rec� state, the facets of
the huts and pits of the R�buc� state are buckled, i.e., exhibit
an additional modulation with a wavelength much smaller
than the size of huts �see Fig. 10�b��. This buckling deforma-
tion present in the R�buc� state disappears as the X point in
phase diagram in Fig. 3 is approached, see Fig. 10�a�. At the
X point, the interface morphology is that of the R�rec� state.

FIG. 8. Buckled rippled state. �a� Its interfacial width w
= �h2�1/2 grows rapidly in time, w� t
 with a high coarsening expo-
nent 
�0.4. �b� Time evolution of the interface, through its contour
plots �upper panels� and facet edges plots �lower panels�. Note that
a regular interface structure develops at long time scales �see the
text and Fig. 9�. �c� Rhomboidal pyramid state �left panels� and the
buckled rippled state �right panels� have similar interface morpholo-
gies as evidenced by their SDs in M space �top�, their interfacial
contour plots �middle�, and corresponding facet edges plots �bot-
tom�. For both states, we put the quartet zeros of the surface non-
equilibrium current on the dashed lines guiding the eye. Note, from
�c� right panel, that the buckled rippled state SD has peaks that are
off the zeros of the current �indicated by open circles�. Thus, in
contrast to the rhomboidal pyramid state in the left panel in �c�, the
facets of the buckled rippled state carry persistent surface currents
�see also Fig. 9�.

FIG. 9. �Color online� Persistent surface currents in the buckled
rippled state, R1

�buc� in �a�. In �c� we plot the current J1 vs x2 for a
fixed x1 which is away from tops and bottoms of the buckled ripples
of the R1

�buc� state. The persistent current is downhill along the R�buc�

facets and it is uphill along the edges between the facets. This yields
a vortexlike behavior of the surface current: the current goes up the
edges and circles back down along the facets. Overall surface cur-
rent pattern has character of the vortex lattice depicted in �b�, in
which the currents are indicated atop the corresponding contour plot
of J1�x1 ,x2�. For comparison, in �c� we also plot �by the dashed
line� the surface current J1 for the ordinary rippled phase which
approaches zero at long times when the facets become large.
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Structurally and, also, according to its position in the
phase diagram in Figs. 2 and 3, the R�buc� state may also
qualify to be the intermediary state seen in the erosion on
Cu�110� and on Rh�110� surfaces �13�. This is documented
by our simulations in Fig. 11, which depict details of the
ripple rotation transition along a line going through the R1

�buc�

state. Note that this figure is, overall, similar to Fig. 5�b�, in
which this transition goes through the intensely rough RhP
state. Thus, by comparison with the near in-phase and out-
of-phase diffraction data on Cu�110� and Rh�110� surfaces
�13�, we argue that these ripple rotation transitions go with
the intervention of either intensely rough RhP �as in Fig. 5�
or the R1

�buc� state �as in Fig. 11�. In addition to the diffraction
data, this statement is supported also by the fact that our RhP
and R1

�buc� states both exhibit the experimentally seen en-
hanced coarsening with the interface width �t0.4. In both
cases, the experimentally seen hot-rippled phase corresponds
to our R2 phase. By decreasing the temperature T, the R2
facets destabilize, and the interface transforms into the RhP
or into the R1

�buc� state. At this point, it is illuminating to
recall of our Fig. 2, and the fact that the R2-to-RhP transition
is a Hopf bifurcation in which R2 facets destabilize and new-
born RhP facets take over the interface morphology �see Sec.
III and Appendix A�. Microscopically, this facet destabiliza-
tion with decreasing T can be caused by the Schwoebel bar-
riers on the kinks on the terrace steps of the R2 facets. These
kinks are easily rounded by adatoms only at high enough T
�so R2 is stable there�. With decreasing T, the R2 facets de-

stabilize due to the Schwoebel barriers, and the R2 rippled
state transforms into the RhP state. Likewise, a further de-
crease of temperature can destabilize the RhP facets and
cause the transition into the fascinating R1

�buc� state that oc-
curs in the situations in which all flat facets are unstable �see
again our Fig. 2�.

Based on this discussion of the microscopic effects under-
lying our phenomenological model, we argue that the inter-
face morphology transformations seen on Cu�110� and
Rh�110� surfaces �13� reflect one �or both� of the following
two chains of far-from-equilibrium transitions:

Chain 1: with decreasing T,

R2 → RhP → R1
�buc�; �4.3�

Chain 2: with decreasing T,

R2 → R1
�buc�. �4.4�

In both chains, the R2 rippled state is the “hot rippled” state,
and the R1

�buc� is the “cold rippled” state. Chain 1 has the
intensely rough RhP as the intermediary state, manifested
through the experimentally seen quartet slope distribution
�see our Fig. 5�b��. On the other hand, the Chain 2 in Eq.
�4.4� does not involve an intermediary state at all. Nonethe-
less, this chain also reproduces the experimental fact that the
quartet slope distribution is seen in an intermediary tempera-

FIG. 10. �a� The interface contour plot obtained at the X point,
exhibiting large huts and pits arranged as in the R1

�rec� state, which is
just to the right of the X point, see Figs. 2 and 3. �b� The interface
contour plot obtained in the R1

�buc� state, exhibiting large buckled
huts and pits arranged as at the X point, which terminates the R1

�buc�

range on its right-hand side, see Figs. 2 and 3. Thus, the R1
�buc� state

is essentially the buckled form of the R1
�rec� state.

FIG. 11. �a� The square of the interfacial width �h2� vs the
parameter a, given for several different times, across the transition
from the rippled state R2 �for a�a−� to the buckled rippled state
R1

�buc� �for a�a−�. This transition does not involve an intermediary
state. �a� is obtained from numerous simulations done along the line
b=1.1 that goes from R2 directly to R1

�buc� state. In �b�, we give FT
magnitudes and SDs found along this ripple rotation transition, for
a=0.2 �in the R2 state�, and for a=0.38 and 0.44 �both within the
R1

�buc� range�. Note that FTs, i.e., near in-phase diffraction patterns
of the R1

�buc� have just two peaks �like the R1 pattern�. Still, SDs, i.e.,
the out-of-phase diffraction patterns distinguish the R1

�buc� from the
R1 state. Overall, FTs and SDs of the R1

�buc� state here are similar to
those of the intensely rough RhP state in Fig 5. However, note that
the forms of SDs of R1

�buc� are closer or even indistinguishable from
that of the R1 state �see SD obtained at a=0.44 here, still within the
R1

�buc� range�.
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ture range. This is documented by our simulations in Fig. 11
which gives the in-phase �FT� and out-of-phase �SD� diffrac-
tion patterns for Chain 2, with only R2 and R1

�buc� states in-
volved. Note that the SD of the R1

�buc� changes from the quar-
tet form �occurring close to the R2-to-R1

�buc� transition� to the
R1-like doublet form, occurring even before the R1

�buc�-to-R1
transition is reached. Thus, importantly, the fascinating buck-
led rippled state R1

�buc� reproduces the behaviors observed
both in the intermediary �RhP-like� and in the ultimate low
temperature �R1-like� regime seen in the experiments �13�.

Note added. The significance of our buckled rippled state
for interpreting experimental data has been recognized also
by the experimental workers, in the very recent study �20� on
the ion erosion of Cu�110� surfaces. In addition, in the dis-
cussions of the rhomboidal pyramid state experimental prop-
erties, these authors have highlighted our phenomenology, in
particular, the role of our phenomenological nonequilibrium
current for understanding of the diffraction data behaviors.
We also note that our phenomenological theory has moti-
vated recent theoretical study �21�. Reference �21�, as well as
its corrected and clarified expositions �22�, well illustrate
tantalizing theoretical problems associated with calculating
detailed analytic form of the nonequilibrium surface current
starting from more microscopic considerations �bottom-to-
top approach�, even for the case of 1D interfaces. In the
present phenomenological �top-to-bottom� approach, the 2D
spatial symmetries of the nonequilibrium surface current
�Sec. II�, rather than its detailed analytic form, play the cen-
tral role in predicting the rich multitude of conceptually and
experimentally interesting interfacial states revealed by our
theory.
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APPENDIX A

To derive the stability conditions used in the discussions
of Sec. III, we expand the interface profile h�x� , t� around a

flat interface profile �facet�, with the slope M� 0,

h�x�,t� = M� 0x� + �h�x�,t� , �A1�

or, in terms of the interface slope, M� =�h=M� 0+�� �h=M� 0

+�M� . We will employ the expansion implied by Eq. �A1� to

study the preferred facets �J�NE�M� 0�=0�� stability in our model
Eq. �2.17�. For this purpose, we first expand the nonequilib-

rium current J�NE�M� �= �J1
NE�M1 ,M2� ,J2

NE�M1 ,M2��,

J�
NE�M� 0 + �M� � = J�

NE�M� 0� + �

=1

2 � �J�
NE

�M

�

M� =M� 0

�M
 + ¯

�A2�

Here, �=1,2. By Eqs. �A2� and �2.1�, and using
��M
 /�x�=��M� /�x
=�2�h /�x��x
, we obtain

�

�t
�h = − �

�=1

2

�

=1

2
1

2
� �J�

NE

�M


+
�J


NE

�M�
�

M� =M� 0

�2

�x��x


�h .

�A3�

Within the linear stability analysis, the nonlinear terms in
�h�x� , t� are ignored in Eq. �A3�. We also ignore the higher
order derivative �curvature� terms that are subdominant in
the long length scale �short wave vector� limit which governs
the stability of large facets. It is assumed that these curvature
terms �such as the surface diffusion term Eq. �2.3�� are
stabilizing, i.e., that there are no short length scale instabili-
ties. Thus, facet instability may emerge only at long length
scales, from the terms exposed in Eq. �A3� which are purely

due to the J�NE�M� �. Equation �A3� is solved by �h�x� , t�
�exp���q1 ,q2�t� · exp�iq1x1+ iq2x2�. Here, ��q1 ,q2� is the
dispersion relation,

��q1,q2� = − �T11q1
2 + 2T12q1q2 + T22q2

2� , �A4�

with

T�
 = T
� = −
1

2
� �J�

NE

�M


+
�J


NE

�M�
� . �A5�

For a stable facet, ��q1 ,q2� in Eq. �A4� must be negative for
any �q1, q2�, thus the matrix T�
 must be positively definite
�PD�. For our model Eq. �2.17�, the stability matrix Eq. �A5�
has the form

T11�M� � = − �1 + a� + 3M1
2 + �b + c�M2

2,

T12�M� � = T21�M� � = bM1M2,

T22�M� � = − �1 − a� + 3M2
2 + �b − c�M1

2. �A6�

Let us analyze the stability of various types of zeros of

J�NE�M� � introduced in Sec. III.
Singlet �M1=M2=0�. For it, by Eqs. �A4�–�A6�, we find

the dispersion relation

�sin�q�� = q1
2�1 + a� + q2

2�1 − a� . �A7�

By Eq. �A7�, for any a there are some values of q� such that
�sin�q���0. Thus, the singlet is generally unstable.

R1 doublet �M1�0,M2=0�. By Eq. �3.1�, this doublet
exists only for 1+a�0. Using Eqs. �3.1� and �A4�–�A6�, we
find the dispersion relation for the R1 doublet,

�R1
�q�� = − 2q1

2�1 + a� − q2
2�1 + b − c��a − a+�b,c�� .

�A8�

Here, a+�b ,c� is given by Eq. �3.4�. By Eq. �A8�, for 1+b
−c�0, the R1 is unstable for a�a+�b ,c� and stable for a
�a+�b ,c�, as reported in Sec. III.

R2 doublet �M1=0 ,M2�0�. By Eq. �3.1�, this doublet
exists only for 1−a�0. Using Eqs. �3.2� and �A4�–�A6�, we
find the dispersion relation for the R2 doublet,
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�R2
�q�� = − 2q2

2�1 − a� − q1
2�1 + b + c��a−�b,c� − a� .

�A9�

Here, a−�b ,c� is given by Eq. �3.4�. By Eq. �A9�, for 1+b
+c�0, the R2 is unstable for a�a−�b ,c� and stable for a
�a−�b ,c�, as anticipated in Sec. III.

Quartet �M1�0,M2�0�. Here, M1 and M2 are as in Eq.
�3.3�, which can be used to show that the quartet zero exists
only between the lines a+ and a− in Fig. 3. Using Eqs. �3.3�
and �A4�–�A6�, we find the dispersion relation for the quartet

�quart�q�� = − 2q1
2M1

2 − 2q2
2M2

2 − 4bq1q2M1M2. �A10�

By denoting here Q1=q1M1, and Q2=q2M2, Eq. �A10� re-
duces to

�quart�Q� � = − 2Q1
2��Q2

Q1
+ b�2

+ 1 − b2	 , �A11�

showing that the quartet is stable for b�1 and a between a+
and a−, as reported in Sec. III. We recall that in this range the
RhP interfacial structure develops �see Secs. III and IV�. On
the other hand, by Eq. �A11�, the quartet becomes unstable
for b�1. By the above discussions, for b in the range 1
�b�bX=�1+c2 and a between a+ and a−, all zeros of

J�NE�M� � are unstable. In this range �notably existing only if
c�0�, the interface cannot develop large flat facets corre-

sponding to any of the zeros of J�NE�M� �. Rather, therein, the
unusual buckled rippled state develops, with an interface
morphology carrying nonzero surface currents �see Sec. IV
and Fig. 9�. This state disappears for c→0 whence the dy-
namics becomes governed by an effective free energy, yield-

ing the current J�NE�M� �=−�U /�M� �see Eq. �2.12a��, and thus
by Eq. �A5�, T�
=�2U /�M��M
. The selected facet then

corresponds to the absolute minimum of U�M� �, which is as-
sured to be stable, i.e., its Hessian matrix T�
 must be PD.
Thus, for the case c=0, the existence of Fef f prohibits the

situation with all zeros of J�NE�M� � being unstable.

APPENDIX B

In this appendix, we prove our theorem Eq. �3.10� on the

static edges between two preferred facets with the slopes M� A

and M� B, and apply it to derive our Eq. �3.9�. Along an edge

the two facets intersect, so M� A ·x� =M� B ·x� with x� = 
x�
ê where ê

is the unit vector along the edge. Thus, M� A · ê=M� B · ê, see

Fig. 12. This equation actually determines ê for a given M� A

and M� B. Let us denote by t̂ the unit vector perpendicular to ê,
t̂ · ê=0, and let us employ the edge based Cartesian coordi-
nate system associated with unit vectors ê and t̂. Thus, we

change the base-plane coordinates as x� =x1î1+x2î2=xLê+xTt̂.
Here, �x1 ,x2� are the original coordinates �as in Sec. II�,
whereas xL and xT, are, respectively, the longitudinal �along
the edge� and perpendicular �to the edge� coordinates. It will

be convenient to express the vectors M� and J�NE using these
edge based coordinate system, via

M� = M1î1 + M2î2 = MLê + MTt̂ ,

J��NE� = J1
�NE�î1 + J2

�NE�î2 = JL
�NE�ê + JT

�NE�t̂ , �B1�

see Fig. 12. This change of coordinates is a rotation, preserv-
ing the form of the 2D divergence,

�� · J��NE� =
�J1

�NE�

�x1
+

�J2
�NE�

�x2
=

�JL
�NE�

�xL
+

�JT
�NE�

�xT
. �B2�

For the infinitely long edge, the interface profile has the form

h�x�� = xLMe + ��xT� , �B3�

see the contour lines in Fig. 12. The corresponding slope
vector components are

ML =
�h

�xL
= Me = const,

MT =
�h

�xT
= MT�xT� =

d��xT�
dxT

, �B4�

i.e., ML=M� · ê is just a constant, whereas MT�xT�=M� · t̂ is a
function of xT only. An edge is analogous to a domain wall in
a magnetic system, with the slope

M� �xT� = Meê + MT�xT�t̂ , �B5�

approaching M� A for xT→−�, and M� B for xT→ +�. To dis-

cuss the form of MT�xT�, note that J�NE�M� �, by Eq. �B5�,
depends on xT only. Thus, by Eq. �B2�,

�� J�NE =
dJT

NE

dxT
=

d

dxT
�t̂ · J�NE�M� �� . �B6�

For the static edge, �h /�t=0, and by Eqs. �2.17�, �B4�, and
�B6�, we find

FIG. 12. The figure aids the derivation of Eq. �3.10�; see Ap-
pendix B text. The inset depicts the integration path used in Eq.
�3.10� to derive Eq. �3.9�.
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0 =
d

dxT
�t̂ · J�NE� − kT� d

dxT
�4

��xT� , �B7�

where kT is a linear combination of the constants k�
 in Eq.
�2.17a�. By Eqs. �B7� and �B4�, one can easily see that

− t̂ · J�NE�M� � − kT
d2MT�xT�

dxT
2 = const = 0. �B8�

The const in �B8� is zero as for x�→ ±� the preferred slopes

M� A and M� B are asymptotically reached and the J�NE→0.
Equation �B8� is isomorphic to that of the Newtonian dy-
namics of a particle with the mass kT and the position MT�xT�
versus time xT, moving under the force �t̂ ·J�NE�M� �. The par-
ticle’s kinetic energy ��dMT /dxT�2 approaches zero in the

limits xT→−� and xT→ +�, in which MT→ �M� A�T and MT

→ �M� B�T, respectively, see Fig. 12. Thus, the total work of

the force �t̂ ·J�NE�M� � along this displacement is zero,

�
�M� A�T

�M� B�T
dMT�t̂ · J��M� �� = 0. �B9�

By Eq. �B5�, one can see that Eq. �B9� is equivalent to Eq.
�3.10�, with the integration path in the M space being the
straight line segment connecting the tips of facet vectors M� A

and M� B. This completes our proof of the theorem in Eq.
�3.10�. Let us apply it to the static edge between one of R1

facets, with the slope vector M� A= ��1+a ,0�, and one of the

R2 facets, with the slope vector M� B= �0,�1−a�, see Eqs.
�3.1� and �3.2�, and Fig. 12 inset. By performing the line
integral in Eq. �3.10� along the straight line segment joining
the tips of M� A with M� B �see Fig. 12 �inset��, for J�NE�M� � in
Eq. �2.17b�, we find that

�
M� A

M� B
dM� · J�NE�M� � = − a +

1

6
c�1 − a2� = 0. �B10�

Solving the equation Eq. �B10� for a yields the critical value,
acr stated in Eq. �3.9�. Of the two solutions of Eq. �B10�,
only the one with 
a
�1 is physical �see the form of M� A and
M� B here�.
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